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Abstract

We establish sufficient conditions for a matrix to be almost totally positive, thus extending a result
of Craven and Csordas who proved that the corresponding conditions guarantee that a matrix is strictly
totally positive. Then we apply our main result in order to obtain a new criteria for a real algebraic
polynomial to be a Hurwitz one. The properties of the corresponding “extremal” Hurwitz polynomials
are discussed.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Totally positive matrix; Strictly totally positive matrix; Shadows’ lemma; Hurwitz polynomial; Entire
function in the Laguerre—Pdlya class

1. Introduction

A real matrix is calledotally positive(TP) if all its minors are nonnegative asttictly
totally positive(STP) if they are positive. Many properties and a variety of applications of
these matrices can be found in the book of Kaflidi] and in the comprehensive survey
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paper of Andd1] (see als¢25]). An interesting sufficient condition for strict total positivity
was established by Craven and Csordgd@j:

Theorem A (Craven and Csordafl 0], Theorem 2.2).Let A = (a;j)1<i,j <n D€ @ matrix
with positive entries and

aijai+1,j+12>0a; j+1ai+1.j, 1<i, j<n —1, 1)

whered ~ 4.0795956235s the unique real root of® — 5x2 + 4x — 1 = 0. Then A is
strictly totally positive.

Let us observe that (1) is far from being a hecessary condition for strict total positivity.
However, it is a rather simple and convenient sufficient condition because it allows the total
positivity to be affirmed only by verifying (1) and the positivity of the elements of the matrix,
and the inequalities (1) themselves are a condition for tke22minors ofA composed by
consecutive rows and columns. We prove an extension of this result without the requirement
that the entries oA are positive. Applications to the theory of entire function and to the
Hurwitz stable polynomials are discussed. We formulate the conjecture that the smallest
possible value of the constaatto set in (1) is 4 if one considers matrices of any order
and itis 4 cod(n/(n + 1)) for n x n matrices. Arguments in support of the conjecture are
provided.

A special subclass of totally positive matrices, callthost strictly totally positive
(ASTP), which include those that are strictly totally positive was introduced by Gasca
et al.[13]. In order to provide the formal definition of ASTP matrices we need to introduce
some notions. Far, n € N, 1<k <n, by O , we denote the set of allincreasing sequences
of k natural numbers, not exceeding By Q/?,n we shall mean the set of sequencek of
consecutivenatural numbers less than or equahtd=or a reakh x n matrix A and a pair
of multiindecesx = (a1, ..., ), B = (B1, ..., ) % B € Qk.n, We denote byA[a|f]
thek x k submatrix ofA composed by rows;, ..., « and columngy, ..., f; of A. In
particular, when: = f3, we set Aj] := A[a|«]. Thus, anonsingulamatrix A of ordern is
called ASTP if it is totally positive and satisfies the following property: a mindgx formed
by consecutive rows and consecutive columns is positive if and only if all its diagonal entries
are positive. Equivalently,

detAlaulf] > 0= a, p >0, v=1...k (2)

and it must hold for any., f§ € Q,?’n. It was proved in [13that, if Ais ASTP, then (2) holds
not only for the multiindeces i@g’n but for anya, f € Q.. Consequently, for this type
of matrices we know exactly the minors which are positive and the ones which are zero.
Characterization of ASTP matrices by means of the Neville elimination, in terms of their
LU-factorizations, as a product of bidiagonal elementary matrices, as well as in terms of
positivity of certain minors determined through the so-called zero patterns, were provided
in [14].

Important ASTP matrices are the Hurwitz matri¢@d 9] and the B-splines collocation
matrices[4]. Some examples of applications of these matrices in Approximation Theory
can be seen if6]. Recently Garloff12] proved that, whem 1 and A, are ASTP matrices
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with A1 < A, where< denotes the so-called chequerboard partial ordering, so ake all
satisfyingA; < A < As.

Itis known that no nonsingular TP matrix can have zeros as diagonal gitri@srollary
3.8]. Then we can deduce from the shadows’ lemma[Sdeemma A]) that, ifA = (a;;)
is a nonsingulan x n TP matrix, then

a; >0 fori=1,...,n
if ajj=0,i>j thenay =O0forallh>iandk<; 3)
If a;; =0, i <j thenay =0forallh<iandk>j.

Before we state our extension of Theorem A to the class of ASTP matrices, recall that a
matrix is called nonnegative (positive) if all its entries are nonnegative (positive).

Theorem 1. Let A = (a;;) be a nonnegative x n matrix satisfying(3). Assume thator
any1<i, j <n — 1, the following condition holds:

if aijaiz1,j+1 >0, thenagjjaii1,j41>0a; j+1ai41, 4)

whereJ is given in Theorem AThen A is TPMoreover,if the second inequality i4) is
strict, then A is nonsingular ASTP.

One of the consequences of this result is for the theory of entire functions with real zeros.
Areal entire function)(x) is said to belong to theaguerre—Pdlya class, writtep € £L—P,
if Y (x) can be represented in the form

w
Y = e T+ x/xe ™%, (0<w<00), ®)
k=1

wherec, f5, x; are real,o>0, m is a honnegative intege[x,;2 < oo and where the
canonical product reduces to 1 when= 0. Pélya and Schuyi28] called the real entire
function(x) a function oftype lin the Laguerre—Pdlya class, writtene £ — P1, if ¢(x)
or ¢(—x) can be represented in the form

(&)

o) =ex"e™ [ [+ x/x0),  (O<w<00), 6)
k=1

wherec is real,6 >0, m is a nonnegative integet; > 0, and>_ 1/x < oo. Itis clear
thatL — PI c £ — P. The importance of the Laguerre—Pdlya class- P (L — PI,
respectively) is revealed by the fact that the function§ in P (£ — PI), and only these,
are the uniform limits, on compact subset€obf polynomials with only real (honpositive)
zeros[21, Chapter VIII]. Polya and Schii28] observed that, if a function

S k
00 =Y g @)
k=0 ’

is in £ —P and its Maclaurin coefficients, are nonnegative, theme £ —PI. In the same
fundamental papg28] Pélya and Schur introduced the notioiltiplier sequencealling
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by this any sequendg, }5° of Maclaurin coefficients of a function i — P1. The reader

may consul{8,9], [21, Chapter VIII],[24, Kapitel I1], [27] and the references therein for
more information about the properties of the functions in the Laguerre—Pdlya class. We only
mention that a necessary condition for an entire funafign), defined by (7), to belong to

L — PI is that the following Turan inequalities

V}%_Vk—l"/k+1>o’ k=l,2,...,

hold. As an immediate consequence of Theofenmve obtain the following sufficient con-
ditions of a function to be i — P1I.

Corollary 2. If the coefficients, in the formal power serie3 2, 7,x%/ k! are positive
and satisfy

k
v — T 157k—17k+1>0’ k=1,2,..., (8)
then it represents an entire functies(x) of genus0 and ¢ € £ — P1I. In particular, if
the coefficients, of the polynomiap(z) = > ;_, ykxk/k! are positive and satisf(8) for
k=1,...,n—1,then all the zeros op(z) are real and negative.

While we were not able to prove Theordmwith the best possible value 4 instead of the
constand and we provide a short proof of Corollary 2 only for the sake of completeness and
as an illustrative application of Theoreln results corresponding to Corolla2y already
with the constant 4 instead éf are known. In 1923 Hutchinsd6], extending the work
of Petrovitch[26] and Hardy{15], proved the following beautiful result for entire function

oo

o) =) axt,

k=0
whose coefficients;, are given byug = 1 and

1

=— k=12, ....
bibo - - - by

Ak

Theorem B ([16, Theorem A. p. 327])The relations
bp=>4b._1, k=23,..., 9)

are the necessary and sufficient conditions that the sgii@$ may have the properties:

1. The zeros off (x) are real,simple and negativegnd

2. The zeros of any polynomia},x™ + - - - 4+ a,x" formed by taking any number of con-
secutive terms of (x) are all real, simple,and negativéexceptingc = 0).

It is worth mentioning a small gap in Hutchinson’s proof. Theorem B is correct either
without the statement for simplicity of the zeros of the polynomials in part 2 or if we
substitute (9) by the corresponding strict inequalities. Indeed, if we fékg= 1+ x +
x2/4+ - .., then the partial sunf,(x) = 1+ x 4+ x2/4 has a double root at2. Observe that
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the inequalities (9) are equivalent to the inequaliﬂﬁ& 4ay_1ax+1 >0 for the Maclaurin
coefficients off (x) = Y 22 axxk, ortoy? — 4559 17,,11>01f f(x) = 02 pexk /K.
Craven and Csordd8] proved extensions of Hutchinson’s result.

Recently KurtZ20] considered only the polynomial case, and proved that2i? and
the coefficientsy;, of the polynomial

P,(x) =ap+aix + -+ a,x"
are all positive and satisfy the inequalities
a? —dar_q1ap41 >0, k=1,...,n—1, (10)

then allthe zeros aP, (x) are negative and distinct. Moreover, Kurtz observed the sharpness
of (10) showing that, for any givess> 0 andn € N, n>2, there exists a polynomial of
degreen, which has some nonreal zeros and whose coefficients are positive and satisfy
a,f — (4 —-¢)ag-1ax+1 >0fork=1,...,n— 1.

However, if one considers entire functions with positive coefficients, i.e. when property
2 in Hutchinson'’s theorem is omitted, then the constaintthe inequalities

a,g —oagp—1ar+1 >0, k=1,2,...

for its Maclaurin coefficients may have somehow smaller value than 4. In a very recent
paper Katkova et al[18], studied in details the extremal value of the constaat well

the properties of the corresponding extremal entire function, the one for which inequalities
reduce to equalities.

Another application of Theorehconcerns the so-called Hurwitz (stable) polynomials,
namely, polynomialsf (z) = ¢,z" + cp—12" "1 + - - - + co with real coefficients:;, whose
zeros have negative real parts. We refefltb, Chapter 15][23, Chapter 9For compre-
hensive information on the stability theory. We only mention that a necessary condition
for a polynomial f (z) with positive leading coefficient to be Hurwitz one is that all its
coefficients are positive.

Theorem 3. Letd be defined as in Theorem Wthe coefficients of

f@) =cn" +epo1z"t

+---+co
are positive and satisfy the inequalities

CrCr4120 Cr—1Cky2 fOor k=1,...,n—2, (11)
then f(z) is a Hurwitz polynomialln particular, the conclusion is true if

>V 1ci1 for k=1,....n—1. (12)

Observe that inequalities (12) imply that the zerog ¢f) have zeros with negative real
parts while the similar but stronger requirements (10) guarantee that these zeros are real,
negative and distinct. We refer[t29,30]for some necessary conditions for a real polynomial
to be stable.
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2. Proof of the main result

Proof of Theorem 1. Given the matrixA satisfying (4), let us construct anx n positive
matrix B = (b;;) such that, for i, j <n — 1,

bijbiy1,j+1=>0b; j11bit1, ;. (13)

For any(i, j) such that;; # 0, we define;; := a;;.

If {G, Dlai; = O.1i — jI = 1} = (G, jD), -, Gy, i)} with if <iz< -+ <y
and, if i} = i;,, for somek, thenjl < jl. ., clearly we can choose positive numbers
bl»]]:’j]j!_, e b,.’;l,jrll such that (13) holds for all&i = j <n — 1. Let us now continue to fill
in the lower triangular part of. If {(i, j)a;; = 0,i — j = 2} = {(iZ, j?)..... (i3, j2)}
withif < if < --- < if,, then we can choose positive numbegs;. ... biz j2 suchthat
(13) holds for all i, j <n — 1 withi — j = 1. Analogously, we can iterate the previous
procedure until we obtain all elemeis > 0 (withi > ;) satisfying (13) for ki, j <n—1
andi > j. In a similar way, we can fill in the upper triangular partfin order to obtain a
positive matrixB satisfying (13) for i, j <n — 1.

Let 0 < ¢ < 1 and letB, be the matrix obtained frofd by replacing the elementz;skvj,f

by the elementbii,jzezkl. Then it can be checked that the entrie8afatisfy a condition
analogous to (13). SincR; is positive and satisfies (13), we deduce from Theorem A that
B, is an STP matrix for each. Taking limits ass — 0, we deduce that the matric&s
converge tdA. Since the set of TP matrices is closed, we concludeAisai P.

Now, suppose that the second inequality in (4) is strict and let us provgigabnsingular
ASTP. For this purpose, itis sufficient to get a contradiction after assuming that there exists
anh x h submatrixC = (c;;) formed by consecutive rows and columnsfohnd whose
positive diagonal entries are positive and@et 0. Leth > 1 be the leastinteger satisfying
the previous property. Sindgis nonnegative and satisfie$) (with the second inequality
strict, we can find > 0 such that

(c11 — T)c22 > Ocr2e21.

Let C; be the matrix with the entries & but with ¢17 — 7 instead ofc11. SinceC is

a submatrix ofA formed by consecutive rows and columns and its diagonal entries are
positive, we deduce tha, and soC; too, satisfy the hypotheses Af Thus, by the first
part of the proofC; is TP, and so de€; > 0. Taking into account that de&t;[2, ..., h] =
detC[2, ..., h] > 0 by our choice oh, we can deduce by the expansion of dgton its

first row that detC; < det C = 0: a contradiction which proves the result]

3. The smallest value of the constand

Before we prove the applications of Theordnto entire functions and to stable poly-
nomials, we shall discuss in this section the smallest possible value of the cofistant
in Theorems A and.. First, we consider the case when the dimension of the matrix is
fixed.
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Theorem 4. Letn € N, n>2. Then,for anye > 0 there exist am x n positive matrix
Ap e = (a;;) for which

aijai+1, 41> M1 — &) coS(n/(n + 1)) @iy jai j+1,  1<i, j<n —1, (14)

butA, . is not STP.

Proof. Consider the: x n Jacobi matrix

J1—¢ex 1/2 0
1/2
An(e, k) = ’
1/2
0 1/2 J1—c¢xk

whereeg is any real number with & ¢ < 1 and letQ,, (x) be the characteristic polynomial
of A, (e, k), m>1. Then the sequence of polynomidl8,, (x)};°_, is generated by the
three term recurrence relation

Qo(x) :=1;
01(x) =v1—-eKx—x;
Om1(x) = Wl-ex—x)0m(x) — (1/HOm-1(x), m=1,2....

On the other hand, the Chebyshev polynomials of the second i), defined by
U,y (cos0) = sin((m + 1)0)/ sin 0, satisfy the recurrence relati@h, +1(x) = 2xU,, (x) —

Un_1(x), m = 1,2,..., with initial conditionsUp(x) = 1 andU1(x) = 2x. Thus,
the characteristic polynomial of,, (¢, ) is the Chebyshev polynomiél, (x) with shifted
argument,

0n,(x) =(=1/2"U,(x — V1 —-¢ek).

Then, since the zeros @f,(x) are cos(k/(n + 1)), k = 1,...,n, those ofQ,(x) are
lk = V1 —¢ek+cos(kt/(n + 1)). Therefore, for = k,, := cos@/(n + 1)), if ¢ > 0, at
least the smallest zeiy of Q,(x) is negative. Hence, fot = x,, the matrixA, (¢, ;) is
not positive definite, and then it is not a TP matrix. On the other hand, the inequalities (14)
fori = j, reduce to equalities for this matrix.
Let u be any positive number with
uw<@Q- 8)71/21671. (15)

n

Setk := |i — j| and let us define the x n matrix A, (s, k,, 1) whose elements;;
coincide with those oft,, (¢, k,,) whenk <1 and are given by;; := (=172 whenk > 2.
The matrixA, (e, x,, 1) is positive. As it was pointed out, (14) holds foe= 0. The above
requirements om guarantee that it holds far = 1. Fork > 2 (14) is obviously satisfied
even for any real.

Observe that lim_.o A, (e, xn, ) = Ay (e, k). Since the set of TP matrices is closed,
if the matricesA,, (¢, x,, 1) were STP for all values gf which satisfy (15), thed,, (¢, ;)
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would be a TP matrix. This contradiction implies that there exist positive mattices «,, 1)
satisfying (14) which are not STP matrices and the result follovis.

Letting n to tend to infinity, we see that the boudaf Theorem A cannot be reduced to
less than 4 when we consider matrices of any order

Corollary 5. Foranye > Othere exist € N,n>2,and am x n positive matrixA = (a;;)
such that

ajjai+1,j+1 =241 — &)ajt1,jai, j+1,

and which is not STP.

We strongly believe that the matrices constructed in the proof of Thedi@mmin some
sense the extremal ones and we venture to suggest the following conjecture.

Conjecture 6. Let A = (g;;) be a nonnegative x n matrix satisfying(3). Assume that,
for any1<i, j <n — 1, the following condition holds:

if ajjaip1,j41> 0, thenajaii1 ji1 > 4 coS(n/(n + 1)a; j11ai41, - (16)

Then A is nonsingular ASTP.
In particular, if A = (a;;) is a positiven x n matrix whose entries satisfy

@jjai+1,j+1 > 4cod(n/(n + D)ai jyiair1,;, 1<i,j<n—1,

then A is strictly totally positive.

Needless to say, when we consider matrices of any order, the above conditions reduce to
ajjaiy1,j+1=>4a; j11ai11,;

and, as seen from CorollaBy the constant 4 cannot be reduced.

4. Entire functions in the Laguerre—Podlya class and Hurwitz polynomials

We begin this section with some additional information about entire functions in the
Laguerre—-Pdlya class. Recall that an infinite sequémgg? , is said to beotally positive
(or Polya frequency sequence) X2, a;x* is an entire function and the infinite upper
triangular matrix

ap ai az

ag daix az . .
a ay . (17)
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is totally positive. Corollary2 is an immediate consequence of Theoreand the follow-
ing characterization of functions in the Laguerre—Pdélya class with nonnegative Maclaurin
coefficients in terms of totally positive sequences, due to Aisen E]al.

Theorem C. The real entire functiomp(x) = > 7o axx* with nonnegative coefficienis
is in the Laguerre—Polya class if and only if the sequefagg;? , is totally positive.

Indeed, the Maclaurin coefficients of

) © Lk
o) =Y axt =3 (18)
k=0 k=0

satisfy inequalities
a,g >oap_1ax+1, k=121,2,..., (19)

which are equivalent to (8) and so, by Theorgnthe sequencgy )2, is totally positive
providedg(x) is an entire function. Thus, in order to prove Coroll&ywe only need to
prove thatp(x) is an entire function of order zero. We shall prove that, if a positive sequence
{ar}72 o satisfies inequalities (19), then

k
a4 <~ 5THED2 gor k2 (20)
)
If we setb, = axt1/ak, then the inequalities (19) are equivalent to the inequalities
br <0 tbr_1. These immediately yield
b < (ar/ag)d~*. (21)

Now, we are in a position to prove (20) by induction with respedt.tmequality (20) for

k = 2 is exactly (19) foik = 1. Suppose that (20) holds for some natural nunkb@ihen,

the induction passage follows from the following simple chain of inequalities where we use
(19), (21) and the induction hypothes)j:

a2 a1 o e
a1 <510 = 57 g <571757k+17115—k(k—1)/2 _ 17]( §kkt+1)/2
ax—1 ao ag” ag
Itis well known that the functiop(x) of the form (18) is entire if its coefficients satisfy

lim,— o la,|*" = 0 and in this case the ordgrof ¢(x) is given by (se22, Lecturel])

=lim su IR log n
pr= 1M SR ~co fog 1 /1a,)

Observe that the inequalities (20) are equivalent to
o = ar/ag< Ckéik(kil)/z,
whereC = aj/ag. Then
n logn log n
S 1/2 :
log(1/lewl) ~ (n — 1)log 6*/? —log C
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Since the order of an entire function does not depend on multiplication by a constant, then
¢(x) is an entire function of order zero.

The extremal entire function for which the inequalities in Hutchinson’s theorem reduce
to equalities turns out to be an interesting one. If weifix= 1 anda; = % then obviously

we have equalities in (9) (or, equivalenﬂq,%’, = day_1ar+1) provideda, = 2% Then the

requirements of Theorem B will be satisfiedjf = q”z, n=20,1,..,andg < % Thus we
conclude that

> 2
Y odv (22)

n=0

is an entire function of order zero which belongsite- PI whenever O< g < % Katkova
et al.[18, Theorem 4proved the existence of a constapt ~ 0.556415, such that the
function (22) has only real zeros if and onlygK g~ It is worth mentioning that it was
proved recently if7] that
2
. qni'xn’
n=0

isin L —Pif |¢g| < 1. In fact, the equivalent fact that the sequemfbf} is a multiplier (or
zero-increasing) sequence fgt < 1 was pointed out ifi7], while the result irf18] shows
{n!q"z} is a multiplier sequence if and only if @ g <goo.

The proof of Theoren8 is an immediate consequence of Theorérand a result of
Hurwitz. Here we only provide the necessary definitions and formulate the Hurwitz theorem.
With the polynomial

f@)= ez + Cn—lznil + Cn—ZZn72 + C;z—SZ’173 + -+ co,

we associate the Hurwitz matrix which is formed as follows.&Sgt=c_» = --- = 0 and
construct the two line block

Cn—1 Cp—-3 ...
chn Cn_2 ...)’

where the first line contains,_2,—1, k = 0,1, ..., and the second line is composed by
the coefficients,,_2, k = 0,1, ..., of f(z). Then, the Hurwitz matrixd (f) of f(z) is
composed by the above block in its first two lines, the next two lined @f) contain the
same block shifted one position to the right, the fifth and the sixth lines contain this block
shifted two positions to the right, and so forth. Thus

Cp_1 Cp—3 Cy—s5 ... 0

Cn Ch2 Ch_g ... 0

H(f)= 0 ¢cy—1¢-3...0
0 ¢ c¢i—2...0

The following is the Hurwitz theorem which is sometimes called the Routh—Hurwitz
criterion.



222 D.K. Dimitrov, J.M. Pefia / Journal of Approximation Theory 132 (2005) 212—-223

Theorem D. The polynomialf (z) with ¢, > Ois stable if and only if the first n principal
minors of the corresponding Hurwitz matrk( /) are positive.

Since the matrixH ( f) satisfies the requirements of the shadows’ lemma, then the fact
that f (z) is a Hurwitz polynomial in Theorer8 does follow immediately from Theorefin
To complete the proof of TheoreB) it remains to observe that the conditions (12) imply
(11).

Interesting examples of Hurwitz polynomials are those for which the inequalities (12)
reduce to equalities. Let be defined as in Theorem A agd= 0712 ~ 0.495098. It
follows from Theoren8 that the polynomials

f@ =3 gF
k=0

are stable when <§'/? ~ 0.703632 and, when = §/2, (12) reduce to equalities for the
coefficients off, (z). On the other hand, motivated by the results in Section 3, we believe
that £, (z) are still stable foy <1/+/2 ~ 0.70710678 and even for larger valuegjoOn the
other hand, Theorem 4 [&8] implies that the same polynomials have only real and negative
zeros whery < g0 ~ 0.556415, at least for large valuesoE N. These consequences of
our results suggest a challenging question about the behaviour of the z¢f@s)ofSiven

a positive integen, which are the largest values of the constantsand M,,, such that the
zeros off, (z) are:

e real and negative whepe (0, m,]?

e with negative real parts whene (0, M, ]?

Obviouslym, < M,, Theorem 4 in18] and Theoren8 in the present paper show that
these constants satisfy the inequalijes < m, andg/?2 < M,, and obviouslyM, < 1

for n > 4. The polynomialfz(z) is stable for any positivg and it has real zeros if and only

if ¢ <3 which means thati, = 3. For n = 3 we have m = 1/+/3 andM3 = 1. Do

m, and M, maintain a monotonic behavior and do they converge gges to infinity? In
particular, is it true that:, — g~ asn goes to infinity?
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